Semiclassical Expansions, the Strong Quantum Limit, and Duality

نویسنده

  • José M. Isidro
چکیده

We show how to complement Feynman’s exponential of the action so that it exhibits a Z2 duality symmetry. The latter illustrates a relativity principle for the notion of quantum versus classical.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Duality in two capacitively coupled layered arrays of ultrasmall Josephson junctions

We consider the problem of two capacitively coupled Josephson junction arrays made of ultrasmall junctions. Each one of the arrays can be in the semiclassical or quantum regimes, depending on their physical parameter values. The former case is dominated by a Cooper-pair superfluid while the quantum one is dominated by dynamic vortices leading to an insulating behavior. We first consider the lim...

متن کامل

A Quantum–Gravity Perspective on Semiclassical vs. Strong–Quantum Duality

It has been argued that, underlying M–theoretic dualities, there should exist a symmetry relating the semiclassical and the strong–quantum regimes of a given action integral. On the other hand, a field–theoretic exchange between long and short distances (similar in nature to the T–duality of strings) has been shown to provide a starting point for quantum gravity, in that this exchange enforces ...

متن کامل

Twisted Poisson duality for some quadratic Poisson algebras

We exhibit a Poisson module restoring a twisted Poincaré duality between Poisson homology and cohomology for the polynomial algebra R = C[X1, . . . , Xn] endowed with Poisson bracket arising from a uniparametrised quantum affine space. This Poisson module is obtained as the semiclassical limit of the dualising bimodule for Hochschild homology of the corresponding quantum affine space. As a coro...

متن کامل

On the duality between periodic orbit statistics and quantum level statistics

We discuss consequences of a recent observation that the sequence of periodic orbits in a chaotic billiard behaves like a poissonian stochastic process on small scales. This enables the semiclassical form factor Ksc(τ) to agree with predictions of random matrix theories for other than infinitesimal τ in the semiclassical limit.

متن کامل

Parametric Spectral Correlations

We consider quantum systems with a chaotic classical limit that depend on an external parameter, and study correlations between the spectra at different parameter values. In particular, we consider the parametric spectral form factor K(τ, x) which depends on a scaled parameter difference x. For parameter variations that do not change the symmetry of the system we show by using semiclassical per...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008